BaseDatasource
- class great_expectations.datasource.BaseDatasource(name: str, execution_engine: Optional[dict] = None, data_context_root_directory: Optional[str] = None, concurrency: Optional[great_expectations.data_context.types.base.ConcurrencyConfig] = None, id: Optional[str] = None)#
A Datasource is the glue between an ExecutionEngine and a DataConnector. This class should be considered abstract and not directly instantiated; please use Datasource instead.
- Parameters:
name – the name for the datasource
execution_engine – the type of compute engine to produce
data_connectors – DataConnectors to add to the datasource
data_context_root_directory – Installation directory path (if installed on a filesystem).
concurrency – Concurrency config used to configure the execution engine.
id – Identifier specific to this datasource.
- get_available_data_asset_names(data_connector_names: Optional[Union[list, str]] = None) Dict[str, List[str]] #
Returns a dictionary of data_asset_names that the specified dataconnector can provide.
Note that some data_connectors may not be capable of describing specific named data assets, and some (such as inferred_asset_data_connector) require the user to configure data asset names.
Example return value:
{
data_connector_name: {
names: [ data_asset_1, data_asset_2 … ]
}
…
}- Parameters:
data_connector_names – the DataConnector for which to get available data asset names.
- Returns:
Dictionary consisting of sets of data assets available for the specified data connectors.