How to configure a ConfiguredAssetDataConnector
This guide demonstrates how to configure a ConfiguredAssetDataConnector, and provides several examples you can use for configuration.
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- A working installation of Great Expectations
- Understand the basics of Datasources in 0.13 or later
- Learned how to configure a Data Context using test_yaml_config
Great Expectations provides two DataConnector
classes for connecting to Data AssetsA collection of records within a Datasource which is usually named based on the underlying data system and sliced to correspond to a desired specification. stored as file-system-like data (this includes files on disk, but also S3 object stores, etc) as well as relational database data:
- A ConfiguredAssetDataConnector allows you to specify that you have multiple Data Assets in a
Datasource
, but also requires an explicit listing of each Data Asset you want to connect to. This allows more fine-tuning, but also requires more setup. - An InferredAssetDataConnector infers
data_asset_name
by using a regex that takes advantage of patterns that exist in the filename or folder structure.
If you're not sure which one to use, please check out How to choose which DataConnector to use.
Steps
1. Instantiate your project's DataContext
Import these necessary packages and modules:
- YAML
- Python
from ruamel import yaml
import great_expectations as gx
from great_expectations.core.batch import BatchRequest
import great_expectations as gx
from great_expectations.core.batch import BatchRequest
2. Set up a Datasource
All of the examples below assume you’re testing configuration using something like:
- YAML
- Python
datasource_yaml = """
name: taxi_datasource
class_name: Datasource
execution_engine:
class_name: PandasExecutionEngine
data_connectors:
<DATACONNECTOR NAME GOES HERE>:
<DATACONNECTOR CONFIGURATION GOES HERE>
"""
context.test_yaml_config(yaml_config=datasource_config)
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"<DATA CONNECTOR NAME GOES HERE>": {
"<DATACONNECTOR CONFIGURATION GOES HERE>"
},
},
}
context.test_yaml_config(yaml.dump(datasource_config))
If you’re not familiar with the test_yaml_config
method, please check out: How to configure Data Context components using test_yaml_config
3. Add a ConfiguredAssetDataConnector to a Datasource configuration
ConfiguredAssetDataConnectors like ConfiguredAssetFilesystemDataConnector
and ConfiguredAssetS3DataConnector
require Data Assets to be explicitly named. A Data Asset is an abstraction that can consist of one or more data_references to CSVs or relational database tables. For instance, you might have a yellow_tripdata
Data Asset containing information about taxi rides, which consists of twelve data_references to twelve CSVs, each consisting of one month of data. Each Data Asset can have their own regex pattern
and group_names
, and if configured, will override any pattern
or group_names
under default_regex
.
Imagine you have the following files in <MY DIRECTORY>/
:
<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv
We could create a Data Asset yellow_tripdata
that contains 3 data_references (yellow_tripdata_2019-01.csv
, yellow_tripdata_2019-02.csv
, and yellow_tripdata_2019-03.csv
).
In that case, the configuration would look like the following:
- YAML
- Python
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(.*)\.csv
group_names:
- month
"""
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"assets": {
"yellow_tripdata": {
"pattern": r"yellow_tripdata_(.*)\.csv",
"group_names": ["month"],
}
},
},
},
}
Notice that we have specified a pattern that captures the year-month combination after yellow_tripdata_
in the filename and assigns it to the group_name
month
.
The configuration would also work with a regex capturing the entire filename (e.g. pattern: (.*)\.csv
). However, capturing the month on its own allows for batch_identifiers
to be used to retrieve a specific BatchA selection of records from a Data Asset. of the Data Asset. For more information about capture groups, refer to the Python documentation on regular expressions.
Later on we could retrieve the data in yellow_tripdata_2019-02.csv
of yellow_tripdata
as its own batch using context.get_validator()
by specifying {"month": "2019-02"}
as the batch_identifier
.
batch_request = BatchRequest(
datasource_name="taxi_datasource",
data_connector_name="default_configured_data_connector_name",
data_asset_name="yellow_tripdata",
)
context.create_expectation_suite(
expectation_suite_name="<MY EXPECTATION SUITE NAME>", overwrite_existing=True
)
validator = context.get_validator(
batch_request=batch_request,
expectation_suite_name="<MY EXPECTATION SUITE NAME>",
batch_identifiers={"month": "2019-02"},
)
print(validator.head())
This ability to access specific Batches using batch_identifiers
is very useful when validating Data Assets that span multiple files.
For more information on batches
and batch_identifiers
, please refer to our Batch documentation.
A corresponding configuration for ConfiguredAssetS3DataConnector
would look similar but would require bucket
and prefix
values instead of base_directory
.
- YAML
- Python
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_inferred_data_connector_name:
class_name: ConfiguredAssetS3DataConnector
bucket: <MY S3 BUCKET>/
prefix: <MY S3 BUCKET PREFIX>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(.*)\.csv
group_names:
- month
"""
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_inferred_data_connector_name": {
"class_name": "ConfiguredAssetS3DataConnector",
"bucket": "<MY S3 BUCKET>/",
"prefix": "<MY S3 BUCKET PREFIX>/",
"assets": {
"yellow_tripdata": {
"group_names": ["month"],
"pattern": r"yellow_tripdata_(.*)\.csv",
},
},
},
The following examples will show scenarios that ConfiguredAssetDataConnectors can help you analyze, using ConfiguredAssetFilesystemDataConnector
.
Example 1: Basic Configuration for a single Data Asset
Continuing the example above, imagine you have the following files in the directory <MY DIRECTORY>
:
<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv
Then this configuration:
- YAML
- Python
# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: (.*)\.csv
group_names:
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"assets": {
"yellow_tripdata": {
"pattern": r"yellow_tripdata_(.*)\.csv",
"group_names": ["month"],
}
},
},
will make available yelow_tripdata
as a single Data Asset with the following data_references:
Available data_asset_names (1 of 1):
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']
Unmatched data_references (0 of 0):[]
Once configured, you can get a ValidatorUsed to run an Expectation Suite against data. from the Data ContextThe primary entry point for a Great Expectations deployment, with configurations and methods for all supporting components. as follows:
context.add_datasource(**datasource_config)
batch_request = BatchRequest(
datasource_name="taxi_datasource",
data_connector_name="default_configured_data_connector_name",
data_asset_name="yellow_tripdata",
)
validator = context.get_validator(
batch_request=batch_request,
expectation_suite_name="<MY EXPECTATION SUITE NAME>",
But what if the regex does not match any files in the directory?
Then this configuration:
- YAML
- Python
# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: green_tripdata_(.*)\.csv
group_names:
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"assets": {
"yellow_tripdata": {
"pattern": r"green_tripdata_(.*)\.csv",
"group_names": ["month"],
}
},
},
will give you this output
Available data_asset_names (1 of 1):
yellow_tripdata (0 of 0): []
Unmatched data_references (3 of 3):['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']
Notice that yellow_tripdata
has 0 data_references
, and there are 3 Unmatched data_references
listed.
This would indicate that some part of the configuration is incorrect and would need to be reviewed.
In our case, changing pattern
to yellow_tripdata_(.*)\.csv
will fix our problem and give the same output to above.
Example 2: Basic configuration with more than one Data Asset
Here’s a similar example, but this time two Data Assets are mixed together in one folder.
Note: For an equivalent configuration using InferredAssetFileSystemDataConnector
, please see Example 2 in How to configure an InferredAssetDataConnector.
<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/green_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/green_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv
<MY DIRECTORY>/green_tripdata_2019-03.csv
Then this configuration:
- YAML
- Python
# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year
- month
green_tripdata:
pattern: green_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"assets": {
"yellow_tripdata": {
"pattern": r"yellow_tripdata_(\d{4})-(\d{2})\.csv",
"group_names": ["year", "month"],
},
"green_tripdata": {
"pattern": r"green_tripdata_(\d{4})-(\d{2})\.csv",
"group_names": ["year", "month"],
},
},
},
will now make yellow_tripdata
and green_tripdata
both available as Data Assets, with the following data_references:
Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['green_tripdata_2019-01.csv', 'green_tripdata_2019-02.csv', 'green_tripdata_2019-03.csv']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']
Unmatched data_references (0 of 0): []
Example 3: Example with Nested Folders
In the following example, files are placed folders that match the data_asset_names
we want (yellow_tripdata
and green_tripdata
), but the filenames follow different formats.
<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-03.csv
<MY DIRECTORY>/green_tripdata/2019-01.csv
<MY DIRECTORY>/green_tripdata/2019-02.csv
<MY DIRECTORY>/green_tripdata/2019-03.csv
The following configuration:
- YAML
- Python
# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
base_directory: yellow_tripdata/
pattern: yellow_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year
- month
green_tripdata:
base_directory: green_tripdata/
pattern: (\d{4})-(\d{2})\.csv
group_names:
- year
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"assets": {
"yellow_tripdata": {
"base_directory": "yellow_tripdata/",
"pattern": r"yellow_tripdata_(\d{4})-(\d{2})\.csv",
"group_names": ["year", "month"],
},
"green_tripdata": {
"base_directory": "green_tripdata/",
"pattern": r"(\d{4})-(\d{2})\.csv",
"group_names": ["year", "month"],
},
},
},
will now make yellow_tripdata
and green_tripdata
available a Data Assets, with the following data_references:
Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['2019-01.csv', '2019-02.csv', '2019-03.csv']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']
Unmatched data_references (0 of 0):[]
Example 4: Example with Explicit data_asset_names and more complex nesting
In this example, the assets yellow_tripdata
and green_tripdata
are being explicitly defined in the configuration, and have a more complex nesting pattern.
<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-01.txt
<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-02.txt
<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-03.txt
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-01.csv
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-02.csv
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-03.csv
The following configuration:
- YAML
- Python
# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
default_regex:
pattern: (.*)_(\d{4})-(\d{2})\.(csv|txt)$
group_names:
- data_asset_name
- year
- month
assets:
yellow_tripdata:
base_directory: yellow/tripdata/
glob_directive: "*.txt"
green_tripdata:
base_directory: green_tripdata/
# Python
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_configured_data_connector_name": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "<MY DIRECTORY>/",
"default_regex": {
"pattern": r"(.*)_(\d{4})-(\d{2})\.(csv|txt)$",
"group_names": ["data_asset_name", "year", "month"],
},
"assets": {
"yellow_tripdata": {
"base_directory": "yellow/tripdata/",
"glob_directive": "*.txt",
},
"green_tripdata": {
"base_directory": "green_tripdata/",
"glob_directive": "*.csv",
},
},
},
will make yellow_tripdata
and green_tripdata
available as Data Assets, with the following data_references:
Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['green_tripdata_2019-01.', 'green_tripdata_2019-02.', 'green_tripdata_2019-03.']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.', 'yellow_tripdata_2019-02.', 'yellow_tripdata_2019-03.']
Unmatched data_references (0 of 0):[]
Additional Notes
To view the full script used in this page, see it on GitHub: