Skip to main content

How to configure a ConfiguredAssetDataConnector

This guide demonstrates how to configure a ConfiguredAssetDataConnector, and provides several examples you can use for configuration.

Prerequisites: This how-to guide assumes you have:

Great Expectations provides two DataConnector classes for connecting to Data AssetsA collection of records within a Datasource which is usually named based on the underlying data system and sliced to correspond to a desired specification. stored as file-system-like data (this includes files on disk, but also S3 object stores, etc) as well as relational database data:

  • A ConfiguredAssetDataConnector allows you to specify that you have multiple Data Assets in a Datasource, but also requires an explicit listing of each Data Asset you want to connect to. This allows more fine-tuning, but also requires more setup.
  • An InferredAssetDataConnector infers data_asset_name by using a regex that takes advantage of patterns that exist in the filename or folder structure.

If you're not sure which one to use, please check out How to choose which DataConnector to use.

Steps

1. Instantiate your project's DataContext

Import these necessary packages and modules:

from ruamel import yaml

import great_expectations as gx
from great_expectations.core.batch import BatchRequest

2. Set up a Datasource

All of the examples below assume you’re testing configuration using something like:

datasource_yaml = """
name: taxi_datasource
class_name: Datasource
execution_engine:
class_name: PandasExecutionEngine
data_connectors:
<DATACONNECTOR NAME GOES HERE>:
<DATACONNECTOR CONFIGURATION GOES HERE>
"""
context.test_yaml_config(yaml_config=datasource_config)

If you’re not familiar with the test_yaml_config method, please check out: How to configure Data Context components using test_yaml_config

3. Add a ConfiguredAssetDataConnector to a Datasource configuration

ConfiguredAssetDataConnectors like ConfiguredAssetFilesystemDataConnector and ConfiguredAssetS3DataConnector require Data Assets to be explicitly named. A Data Asset is an abstraction that can consist of one or more data_references to CSVs or relational database tables. For instance, you might have a yellow_tripdata Data Asset containing information about taxi rides, which consists of twelve data_references to twelve CSVs, each consisting of one month of data. Each Data Asset can have their own regex pattern and group_names, and if configured, will override any pattern or group_names under default_regex.

Imagine you have the following files in <MY DIRECTORY>/:

<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv

We could create a Data Asset yellow_tripdata that contains 3 data_references (yellow_tripdata_2019-01.csv, yellow_tripdata_2019-02.csv, and yellow_tripdata_2019-03.csv). In that case, the configuration would look like the following:

datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(.*)\.csv
group_names:
- month
"""

Notice that we have specified a pattern that captures the year-month combination after yellow_tripdata_ in the filename and assigns it to the group_name month.

The configuration would also work with a regex capturing the entire filename (e.g. pattern: (.*)\.csv). However, capturing the month on its own allows for batch_identifiers to be used to retrieve a specific BatchA selection of records from a Data Asset. of the Data Asset. For more information about capture groups, refer to the Python documentation on regular expressions.

Later on we could retrieve the data in yellow_tripdata_2019-02.csv of yellow_tripdata as its own batch using context.get_validator() by specifying {"month": "2019-02"} as the batch_identifier.

batch_request = BatchRequest(
datasource_name="taxi_datasource",
data_connector_name="default_configured_data_connector_name",
data_asset_name="yellow_tripdata",
)

context.create_expectation_suite(
expectation_suite_name="<MY EXPECTATION SUITE NAME>", overwrite_existing=True
)

validator = context.get_validator(
batch_request=batch_request,
expectation_suite_name="<MY EXPECTATION SUITE NAME>",
batch_identifiers={"month": "2019-02"},
)
print(validator.head())

This ability to access specific Batches using batch_identifiers is very useful when validating Data Assets that span multiple files. For more information on batches and batch_identifiers, please refer to our Batch documentation.

A corresponding configuration for ConfiguredAssetS3DataConnector would look similar but would require bucket and prefix values instead of base_directory.

datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_inferred_data_connector_name:
class_name: ConfiguredAssetS3DataConnector
bucket: <MY S3 BUCKET>/
prefix: <MY S3 BUCKET PREFIX>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(.*)\.csv
group_names:
- month
"""

The following examples will show scenarios that ConfiguredAssetDataConnectors can help you analyze, using ConfiguredAssetFilesystemDataConnector.

Example 1: Basic Configuration for a single Data Asset

Continuing the example above, imagine you have the following files in the directory <MY DIRECTORY>:

<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv

Then this configuration:

# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: (.*)\.csv
group_names:

will make available yelow_tripdata as a single Data Asset with the following data_references:

Available data_asset_names (1 of 1):
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']

Unmatched data_references (0 of 0):[]

Once configured, you can get a ValidatorUsed to run an Expectation Suite against data. from the Data ContextThe primary entry point for a Great Expectations deployment, with configurations and methods for all supporting components. as follows:

context.add_datasource(**datasource_config)

batch_request = BatchRequest(
datasource_name="taxi_datasource",
data_connector_name="default_configured_data_connector_name",
data_asset_name="yellow_tripdata",
)

validator = context.get_validator(
batch_request=batch_request,
expectation_suite_name="<MY EXPECTATION SUITE NAME>",

But what if the regex does not match any files in the directory?

Then this configuration:

# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: green_tripdata_(.*)\.csv
group_names:

will give you this output

Available data_asset_names (1 of 1):
yellow_tripdata (0 of 0): []

Unmatched data_references (3 of 3):['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']

Notice that yellow_tripdata has 0 data_references, and there are 3 Unmatched data_references listed. This would indicate that some part of the configuration is incorrect and would need to be reviewed. In our case, changing pattern to yellow_tripdata_(.*)\.csv will fix our problem and give the same output to above.

Example 2: Basic configuration with more than one Data Asset

Here’s a similar example, but this time two Data Assets are mixed together in one folder.

Note: For an equivalent configuration using InferredAssetFileSystemDataConnector, please see Example 2 in How to configure an InferredAssetDataConnector.

<MY DIRECTORY>/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/green_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/green_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata_2019-03.csv
<MY DIRECTORY>/green_tripdata_2019-03.csv

Then this configuration:

# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
pattern: yellow_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year
- month
green_tripdata:
pattern: green_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year

will now make yellow_tripdata and green_tripdata both available as Data Assets, with the following data_references:

Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['green_tripdata_2019-01.csv', 'green_tripdata_2019-02.csv', 'green_tripdata_2019-03.csv']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']

Unmatched data_references (0 of 0): []

Example 3: Example with Nested Folders

In the following example, files are placed folders that match the data_asset_names we want (yellow_tripdata and green_tripdata), but the filenames follow different formats.

<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-01.csv
<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-02.csv
<MY DIRECTORY>/yellow_tripdata/yellow_tripdata_2019-03.csv
<MY DIRECTORY>/green_tripdata/2019-01.csv
<MY DIRECTORY>/green_tripdata/2019-02.csv
<MY DIRECTORY>/green_tripdata/2019-03.csv

The following configuration:

# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
assets:
yellow_tripdata:
base_directory: yellow_tripdata/
pattern: yellow_tripdata_(\d{4})-(\d{2})\.csv
group_names:
- year
- month
green_tripdata:
base_directory: green_tripdata/
pattern: (\d{4})-(\d{2})\.csv
group_names:
- year

will now make yellow_tripdata and green_tripdata available a Data Assets, with the following data_references:

Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['2019-01.csv', '2019-02.csv', '2019-03.csv']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.csv', 'yellow_tripdata_2019-02.csv', 'yellow_tripdata_2019-03.csv']

Unmatched data_references (0 of 0):[]

Example 4: Example with Explicit data_asset_names and more complex nesting

In this example, the assets yellow_tripdata and green_tripdata are being explicitly defined in the configuration, and have a more complex nesting pattern.

<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-01.txt
<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-02.txt
<MY DIRECTORY>/yellow/tripdata/yellow_tripdata_2019-03.txt
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-01.csv
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-02.csv
<MY DIRECTORY>/green_tripdata/green_tripdata_2019-03.csv

The following configuration:

# YAML
datasource_yaml = r"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_configured_data_connector_name:
class_name: ConfiguredAssetFilesystemDataConnector
base_directory: <MY DIRECTORY>/
default_regex:
pattern: (.*)_(\d{4})-(\d{2})\.(csv|txt)$
group_names:
- data_asset_name
- year
- month
assets:
yellow_tripdata:
base_directory: yellow/tripdata/
glob_directive: "*.txt"
green_tripdata:
base_directory: green_tripdata/

will make yellow_tripdata and green_tripdata available as Data Assets, with the following data_references:

Available data_asset_names (2 of 2):
green_tripdata (3 of 3): ['green_tripdata_2019-01.', 'green_tripdata_2019-02.', 'green_tripdata_2019-03.']
yellow_tripdata (3 of 3): ['yellow_tripdata_2019-01.', 'yellow_tripdata_2019-02.', 'yellow_tripdata_2019-03.']

Unmatched data_references (0 of 0):[]

Additional Notes

To view the full script used in this page, see it on GitHub: